Fibonacci integers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibonacci Integers

A Fibonacci integer is an integer in the multiplicative group generated by the Fibonacci numbers. For example, 77 = 21 · 55/(3 · 5) is a Fibonacci integer. Using some results about the structure of this multiplicative group, we determine a near-asymptotic formula for the counting function of the Fibonacci integers, showing that up to x the number of them is between exp(c(log x) − (log x)) and e...

متن کامل

Fibonacci Expansions and "f-adic" Integers

A Fibonacci expansion of a nonnegative integer n is an expression of n as a sum of Fibonacci numbers Fk with k > 2. It may be thought of as a partition of n into Fibonacci parts. The most commonly studied such expansion is the unique one in which the parts are all distinct and no two consecutive Fibonacci numbers appear. C. G. Lekkerkerker first showed this expansion was unique in 1952 [5]. The...

متن کامل

On representations of positive integers in the Fibonacci base

We exhibit and study various regularity properties of the sequence (R(n))n 1 which counts the number of different representations of the positive integer n in the Fibonacci numeration system. The regularity properties in question are observed by representing the sequence as a two-dimensional array consisting of an infinite number of rows L1, L2, L3, . . . where each Lk contains fk−1 (the k − 1s...

متن کامل

Integers with a maximal number of Fibonacci representations

We study the properties of the function R(n) which determines the number of representations of an integer n as a sum of distinct Fibonacci numbers Fk. We determine the maximum and mean values of R(n) for Fk ≤ n < Fk+1. Mathematics Subject Classification. 11A67, 11B39.

متن کامل

1 INTEGERS 11 A ( 2011 ) Proceedings of Integers Conference 2009 ON THE INTERSECTIONS OF FIBONACCI , PELL , AND LUCAS NUMBERS

We describe how to compute the intersection of two Lucas sequences of the forms {Un(P,±1)}n=0 or {Vn(P,±1)}n=0 with P ∈ Z that includes sequences of Fibonacci, Pell, Lucas, and Lucas-Pell numbers. We prove that such an intersection is finite except for the case Un(1,−1) and Un(3, 1) and the case of two V -sequences when the product of their discriminants is a perfect square. Moreover, the inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2011

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2010.09.010